首页> 外文OA文献 >Assessment of crystal plasticity finite element simulations of the hot deformation of metals from local strain and orientation measurements
【2h】

Assessment of crystal plasticity finite element simulations of the hot deformation of metals from local strain and orientation measurements

机译:通过局部应变和取向测量评估金属热变形的晶体可塑性有限元模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simulations of the deformation of microstructures at high homologous temperatures have been carried out using a Crystal Plasticity Finite Element (CPFE) model to predict texture and grain structure deformation in Face-Centred-Cubic (FCC) metals deformed under conditions representative of hot forming operations. Results show that the model can quantitatively predict the location and intensity of the main deformation texture components of a AA5052 aluminium alloy deformed at 300 °C under Plane Strain Compression (PSC). Simulations also reasonably predict the range of strain values measured using microgrids in the microstructure of a Fe-30wt%Ni alloy deformed at 1000 °C using a new experimental procedure. However, the model fails to reproduce accurately intra-granular strain distribution patterns. Results at room temperature, after a tensile test carried out inside a Scanning Electron Microscope (SEM) on the same model alloy, show a much closer match between simulation and experimental results. Despite discrepancies for some local deformation features, the model predicts the formation of intense deformation bands running at 45° with respect to the tensile axis and located along the same grain boundaries as in the experiment. Results, therefore, highlight the limitations of deterministic CPFE simulations for situations where the grain size to sample thickness ratio is small and for which the sub-surface grain geometry strongly affects surface strains. They also show that reliable predictions of the statistical response of a polycrystalline aggregate can be obtained for the hot deformation of metals which controls microstructure evolution during the processing of metals.
机译:使用晶体可塑性有限元(CPFE)模型对高同源温度下的微结构变形进行了模拟,以预测在代表热成型操作的条件下变形的面心立方(FCC)金属的织构和晶粒结构变形。结果表明,该模型可以定量地预测平面应变压缩(PSC)下300°C变形的AA5052铝合金主要变形织构的位置和强度。模拟还可以合理地预测使用新实验程序在1000°C下变形的Fe-30wt%Ni合金的微观结构中使用微网测量的应变值范围。但是,该模型无法准确地再现颗粒内应变分布模式。在室温下的结果,在同一型号合金上在扫描电子显微镜(SEM)内进行的拉伸试验后,表明模拟结果与实验结果之间的匹配度更高。尽管某些局部变形特征存在差异,该模型仍预测会形成相对于拉伸轴呈45°延伸且沿与实验相同的晶界定位的强烈变形带。因此,结果突出了确定性CPFE模拟的局限性,在这种情况下,晶粒尺寸与样品厚度之比很小,并且亚表面晶粒的几何形状严重影响表面应变。他们还表明,对于金属的热变形,可以得到多晶聚集体统计响应的可靠预测,从而可以控制金属加工过程中的微观结构演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号